
How to debug flash with Digital Discovery 

When developing a new host board, it's important to know the hardware specification and observe the 

timing of signals. Digilent Digital Discovery provides a High Speed Logic Analyzer that allows users to 

visualize and analyze the signals traversing through development board. For example, in the process of 

developing a new field programmable gate array (FPGA) board, the speed of the QSPI transactions in the 

boot sequence isn’t specified clearly. To solve this issue, we use the Digital Discovery to visualize the 

boot sequence to debug the logic. 

Step 1: Connecting the Digital Discovery 

First of all, we use the SOIC clip connect Digital Discovery with the on-board flash. 

 

Step 2: QSPI script 

Then, a custom interpreter is used  to translate the QSPI signals into data. This is activated by adding a 

“Custom” channel from the Logic instrument in Digilent WaveForms. (see below javascript code) 

// rgData: input, raw digital sample array 

// rgValue: output, decoded data array 

// rgFlag: output, decoded flag array 

 

var c = rgData.length // c = number of raw samples 

var pClock = false; // previous cock signal level 

var iStart = 0;     // used to keep track on word start index 

var cByte = 0;      // byte count per transmission 

var cBits = 0;      // bit counter 

var bValue = 0;     // value variable 



var fCmd = true; 

 

for(var i = 0; i < c; i++){ // for each sample 

    var s = rgData[i]; // current sample 

    var fSelect = 1&(s>>0); // pin0 is the select signal 

    var fClock = 1&(s>>1); // pin1 is the clock signal 

    var fData = 1&(s>>2); // pin2 is the data signal 

    var fData4 = 0xF&(s>>2); // DIN 2-5 DQ 0-3 

     

    if(fSelect != 0){ // select active low 

        // while select inactive reset our counters/variables 

        iStart = i+1; // select might become active with next sample 

        cByte = 0; 

        cBits = 0; 

        bValue = 0; 

        pClock = false; 

        fCmd = true; 

        continue; 

    } 

    if(pClock == 0 && fClock != 0){ // sample on clock rising edge 

         

            bValue <<= 4; // serial data bit, MSBit first 

            bValue |= fData4; 

             

            cBits++; 

            if(cBits==2){ // when got the 8th bit of the word store it 

                cByte++; 

                // store rgValue/Flag from word start index to current sample 

position 

                for(var j = iStart; j < i; j++){ 

                    // Flag change will be visible on plot even when data remains 

constant. 

                    // This is useful in case we get more consecutive equal 

values. 

                    rgFlag[j] = cByte; 

                    rgValue[j] = bValue; 

                } 

                iStart = i+1; // next word might start after this sample 

                cBits = 0;  // reset bit count for the next byte 

                bValue = 0; // reset value variable 

            } 

         

    } 

    pClock = fClock; // previous clock level 

} 



 

Step 3: Trigger and acquisition 

Although the maximum QSPI clock frequency is about 100 MHz, when booting, a maximum frequency of 

25 MHz is used. Also, the entire boot transfer takes about 700 ms. Because of this, both a large number 

of samples and a decent sample rate are required, and this is where the Digital Discovery comes in 

handy. 268 million samples at 200 MHz would translate into a ~1.3 second frame. 

The acquisition itself is quite demanding, using a lot of the PC's memory (16 GB) and it also takes a long 

time to process the data. 

The trigger is set on the falling edge of the CS signal. 

Below is the entire QSPI transaction captured by Digilent Waveforms. 

 

Step 4: Boot transfers 

There are two documents that need to be read in order to understand what the data transfers 

represent. One is the Zynq TRM and the other one is the flash memory's datasheet. 

The instructions sent from the Zynq to the flash memory are always sent via SPI using D0. The first 

instruction sent is 0x03 0x00 0x00 0x20 which means SPI READ from address 0x20 and the reply is also 

received via SPI using D1, 0x66 0x55 0x99 0xaa. The flash read instruction is explained on page 85 of the 

datasheet. 

 

 

In the Zynq TRM pages 170 and 179 explain what that reply means. In short, that set of bytes tell the 

Zynq that the memory is QSPI capable. It is also important to observe that, at this point, the SPI clock 

frequency is 5.405 MHz, which is a relatively low speed. 

https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjapcyd7uDVAhVE6xQKHVlnBewQFggmMAA&url=https%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fuser_guides%2Fug585-Zynq-7000-TRM.pdf&usg=AFQjCNGKIF3-QJmuzE4eaFW3E9aJUG-iAA
https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjTgJvg7uDVAhVI6xQKHfqpA74QFggmMAA&url=http%3A%2F%2Fwww.cypress.com%2Ffile%2F177966%2Fdownload&usg=AFQjCNGhj1bFGD6gfZGYWPR6pdwql2Oc3w


From this point on, since it has been determined that the memory supports QSPI, all transactions will be 

done on all 4 data lines. For instance, the next instruction will be 0x6b followed by a 3 byte address. 

0x6b represents a quad read instruction and the response will be seen on the QSPI interpreter after 8 

clock periods, which are “dummy” bytes. 

 

In this case, the address is 0x1d and 7 bytes are read. These bytes are from addresses 0x1d, 0x1e, 0x1f 

which are part of an interrupt table and then it reads 4 bytes from address 0x20 which are the same 

bytes read at the first SPI read. 

The Zynq will proceed to read bytes, incrementing the address until it reaches 0x45, which is the end of 

the bootROM header. 

 

Unfortunately, because we do not have access to the BootROM code, the rest of the boot sequence is 

not so transparent. At some point, the FSBL (first stage boot loader) will begin to run, most likely where 

the SPI clock frequency changes to 25 MHz as seen below, 84 ms after the boot process started. 

The FSBL will then read the boot image and analyze the different partitions that it contains, including the 

.bit file, which will configure the Zynq's PL, and the .elf which will run in the ARM. 

 

 


