

TO-LL: the latest evolution in SMD power packages STPOWER MOSFET SJ MDmesh M6 and DM6

TO-LL the new space-saving and thermally efficient package

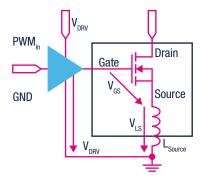
The new STPOWER MOSFET Super-junction MDmesh* M6 and MDmesh DM6 series in the space-saving and thermally efficient TO-LL leadless package allows more compact and spacesaving power converters. Thanks to the additional Kelvin-source lead, designers can achieve better efficiency due to reduced turn-on / turn-off switching losses.

KEY FEATURES

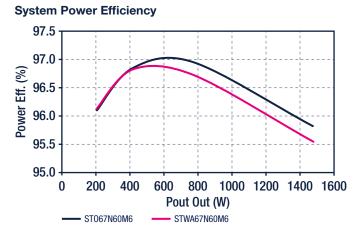
- Reduced space on board
- Distributed heat sinks
- Additional Kelvin source
- Reduced thickness (2.3 mm)
- High creepage (distance 2.7 mm)

MAIN BENEFITS

- Increased power density
- Competitive thermal dissipation
- Improvement in Turn-on / Turn-off efficiency ______

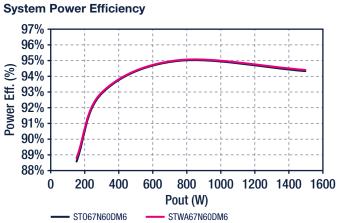

KEY APPLICATIONS

- Servers
- Telecom 5G SMPS
- Solar Microinvertes

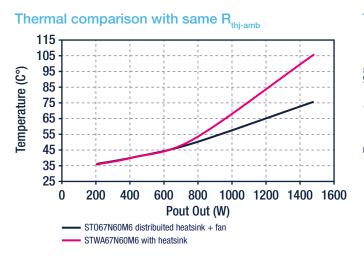


TO-LL WITH STPOWER MOSFET MDmesh M6 AND MDmesh DM6 SERIES

The TO-Leadless (TO-LL) package solution was tested against the TO-247 in the PFC and LLC sections of a 1.5 kW SMPS to compare their respective thermal performance and efficiency. The additional Kelvin-source lead generates significant efficiency gains in the PFC section at full load with high current levels, thanks to the reduction of the inductive effect on the turn-on commutation. The efficiency in the LLC section remains identical for both packages.

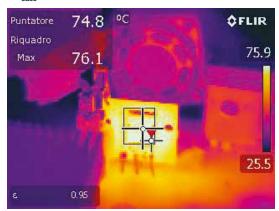


Power efficiency in PFC section


The Kelvin-pin on the TO-LL package delivers better efficiency than the conventional TO-247 package, especially at full load.

Power efficiency in LLC section

The power efficiency in the LLC is the same for both SMD and THD solutions. The Kelvin-pin does not impact efficiency because current at turn-off is very low and turn-on losses are zero due to ZVS.



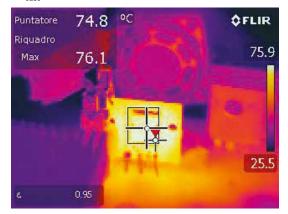
Thermal comparison beetween TO-LL and TO-247 at the same $\rm R_{thi-amb}$ in 1.5 kW PFC.

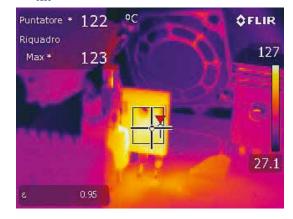
Thermal comparison with same $\mathrm{R}_{_{thj-amb}}$ in 1.5 kW PFC

TO-LL T_{case} at 1.5 kW

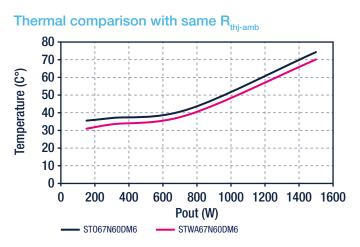
Thermal comparison with same fan 145 125 Temperature (C°) 105 85 65 45 25 800 1000 1200 1400 1600 0 200 400 600 Pout Out (W) ST067N60M6 distribuited heatsink + fan STWA67N60M6 no heatsink + fan

Thermal comparison beetween TO-LL and TO-247 with the same fan in 1.5 kW PFC



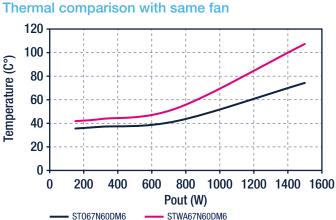

The TO-LL package generates less heat than the TO-247 option for an equivalent $R_{thj-amb}$ (in this case about 3.75 °C/W). To maintain a constant thermal resistance, we used a cooling fan for the TO-LL package, and a heatsink for the TO-247.

Thermal comparison with same fan


TO-LL T_{case} at 1.5 kW

TO-247 T_{case} at 1.5 kW

When we remove the heatsink from the TO-247 and use the same fan cooling system for both packages, the thermal performance of the TO-LL does not degrade like the TO-247.



Thermal comparison beetween TO-LL and TO-247 at the same $\rm R_{thi-amb}$ in 1.5 kW LLC.

Thermal comparison with same R_{thi-amb} in 1.5 kW LLC

TO-LL T_{case} at 1.5 kW

Thermal comparison beetween TO-LL and TO-247 with the same fan in 1.5 kW LLC.

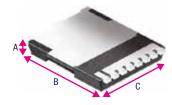
The TO-LL solution allows almost the same temperature respect the TO-247 when we use the same $R_{thj-amb}$, approximately 12.5 °C/W.

To maintain a constant thermal resistance, we used a cooling fan for the TO-LL package, and a heatsink for the TO-247.

Thermal comparison with same fan

TO-LL T_{case} at 1.5 kW

TO-247 T_{case} at 1.5 kW

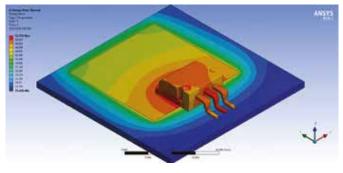

When we remove the heatsink from the TO-247 and use the same fan cooling system for both packages, the thermal performance of the TO-LL does not degrade like the TO-247.

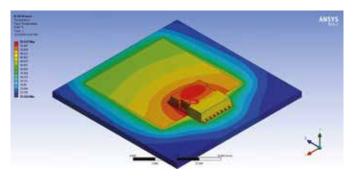
TO-LL vs D²PAK

Size and thermal performance comparisons

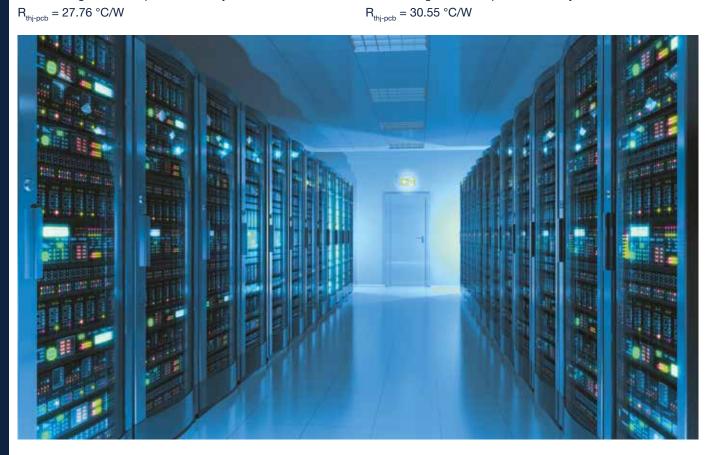
TO-LL Area on Board: 115.6 mm²

Dimensions (mm)


	A	В	C	
D ² PAK	4.6	15.8	10.4	
TO-LL	2.3	11.7	9.9	


TO-LL: 30% Saved Area on Board vs D²PAK

TO-LL


Thermal performance comparisons

D²PAK using 1 inch² 70 µm thick Cu layer

TO-LL using 1 inch² 70 µm thick Cu layer $R_{thj-pcb} = 30.55 \text{ °C/W}$

Product portfolio in TO-LL package

B _{vdss} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (nC)	Sales Type	Package	Technology
0.1 0.0 600 0.0 0.0 0.0	0.190	TBD	TBD	ST024N60M6	TO-LL	MDmesh M6
	0.125	30	38	ST033N60M6		
	0.099	34	47	ST036N60M6		
	0.080	40	57	ST047N60M6		
	0.054	38	80	ST067N60M6		
	0.078	TBD	61	ST065N60DM6*		MDmesh DM6
	0.076	40	65	ST052N60DM6**		
	0.054	38	80	ST067N60DM6		
650	0.059	34	80	ST068N65DM6		

Note: * coming soon by Q3 2020

** coming soon by Q4 2020

To explore the complete MDmesh M6 and MDmesh DM6 product portfolio, visit www.st.com or use our ST-MOSFET-Finder mobile app for Android and iOS.

life.augmented

Order code: BRTOLLPKG0720

For more information on ST products and solutions, visit www.st.com

Strand the ST logo are registered and/or unregistered trademarks of STMicroelectronics International NV or s affiliates in the EU and/or elsewhere. In particular, ST and the ST logo are Registered in the US Patent and Trademark Office. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

