Tutorial: The Benefits of Integrated PowerSoCs Versus Discrete Power Converters

© 2016 Altera—Public

Switch Mode DC-DC Step Down Converter: Discrete versus PowerSoC Implementation

Switch Mode DC-DC Step Down Converter: Discrete Implementation

Switch Mode DC-DC Step Down Converter: Discrete Implementation

Switch Mode DC-DC Step Down Converter: Discrete Implementation

Switch Mode DC-DC Step Down Converter: PowerSoC Implementation

PowerSoC Products Offer a Much Smaller Total Solution Size Versus Discrete Solutions

4 A PowerSoC

4 A Discrete Solution

The discrete solution takes up 7X more PCB area than the PowerSoC

The PCB area savings that the PowerSoC provides can be used to:

- Reduce the size of the PCB and save cost
- Add additional features or components to the end product that otherwise would not be possible

PowerSoC Products Offer Better EMI Performance Versus Discrete Solutions

4 A PowerSoC

4 A Discrete Solution

- Radiated EMI comes from high di/dt currents flowing in loops
- Radiated power is proportional to the radius of the current loop and decreases by r⁸
 - Since PowerSoC solutions have current loops with a much smaller radius (r) than discrete solutions, the radiated power is significantly lower

PowerSoC Products Offer Better System Reliability Versus Discrete Solutions

The Failures in Time (FIT) rate of a power converter system is the sum of component FIT fates as follows:

 $FIT_{SYSTEM} = FIT_{CONTROLLER} + FIT_{MOSFETS} + FIT_{INDUCTOR} + FIT_{PASSIVES}$

 Competing discrete solutions are not designed, tested, and qualified as a complete power converter system like PowerSoCs are

PowerSoC Products Offer Better System Reliability Versus Discrete Solutions

The Failures in Time (FIT) rate of a power converter system is the sum of component FIT fates as follows:

FIT_{SYSTEM} = FIT_{CONTROLLER} + FIT_{MOSFETS} + FIT_{INDUCTOR} + FIT_{PASSIVES}
Competing discrete solutions are not designed, tested, and qualified as a *complete* power converter system like PowerSoCs are

Component	FIT Rate
PowerSoC	2.5
4 MLCC Passives	0.8 (4x0.2)
2 Resistors	0.2 (2x0.1)

4 A PowerSoC

4 A Discrete Solution

FIT Rate
1.5
5
2 (10x0.2)
5
0.9 (9x0.1)

Total FITs: 3.5 Mean Time Between Failure (MTBF): 32,600 years

Mean Time Between Failure (MTBF): 7,900 years

Total FITs: 14.4

PowerSoC Devices Help Reduce Development Time and are Lower Risk Solutions than Discrete Solutions

Typical Discrete DC-DC Converter Design Steps	
Review regulator specifications and requirements	
↓ Select DC-DC regulator device	
→ Solution analysis	
↓ Select inductors	
Select input and output capacitors ↓	
Simulate power stage, input/output filters	
Analyze control design and select compensation network ↓	
Verify time domain analysis/simulation	
Schematic finalized ↓	
Custom PCB layout & bill of material ↓	
Final BOM: component optimization & trade-offs	
System scope creep; requirement change	
PCB design and assembly	
↓ Destature to still a	
Prototype testing	

A typical Discrete DC-DC converter design requires: ~464 people-hours ~19 steps with iterations

PowerSoC Products Help Reduce Development Time and are Lower Risk Solutions than Discrete Solutions

Typical PowerSoC Design Steps

Review PowerSoC specifications and requirements Select PowerSOC device Look up (minimal) external components System scope creep; requirement change PCB design using standard/tested design files Prototype testing

A typical Discrete DC-DC converter design requires: ~464 people-hours

~19 steps with iterations

The PowerSoC Advantage A typical PowerSoC design requires: ~254 people-hours (45% less) ~6.7 steps with iterations

Summary

PowerSoC solutions offer many benefits over discrete power solutions such as:

- Reduced PCB cost due to smaller size
- Better EMI performance because of their compact nature
- < Improved system level reliability
- Faster, easier, lower cost, and lower risk development that improves time to market

Thank You

For more information, please visit: www.arrow.com/en/products/manufacturers/a/altera

© 2016 Altera—Public

© 2016 Intel Corporation. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others.