



# **ARROW ARIS Board**

Hardware User's Guide

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by RELOC s.r.l. without notice.



## Outline

| 1.   | Introduction                    | 4  |
|------|---------------------------------|----|
| 1.1  | 1. Description                  | 4  |
| 1.2  | 2. Kit contents                 | 4  |
| 1.3  | 3. Getting started              | 4  |
| 2.   | System overview                 | 5  |
| 2.1  | 1. Board layout                 | 5  |
| 2.2  | 2. Block diagram                | 6  |
| 3.   | Connectors                      | 7  |
| 3.1  | 1. LCD connector                | 8  |
| 3.2  | 2. Expansion header             | 9  |
| 3.3  | 3. Arduino connector            | 9  |
| 3.4  | 4. JTAG connectors              | 9  |
| 3.5  | 5. Ethernet 10/100              | 10 |
| 3.6  | 6. USB device                   | 10 |
| 3.7  | 7. USB host/device              | 10 |
| 4. 1 | Usage                           | 12 |
| 4.1  | 1. Power supply                 | 12 |
| 4.2  | 2. Power enable and measurement | 13 |
| 4.3  | 3. Configuration headers        | 14 |
| 4.4  | 4. Push buttons and LEDs        | 15 |
| 5. I | Board layout                    |    |



## Revisions

| REVISION | DATE       | DESCRIPTION                  | STATUS  | AUTHOR       | Reviser  |
|----------|------------|------------------------------|---------|--------------|----------|
| 0.1      | 24/05/2016 | Document created             | draft   | L. Dal Bello |          |
| 0.2      | 30/05/2016 | Connector descriptions added | draft   | L. Dal Bello | A. Ricci |
| 0.1      | 31/05/2016 | Document released            | release | L. Dal Bello | A. Ricci |
|          |            |                              |         |              |          |
|          |            |                              |         |              |          |
|          |            |                              |         |              |          |

## Disclaimer

All rights strictly reserved. Reproduction in any form is not permitted without written authorization from RELOC s.r.l.

| RELOC s.r.l. |                                         | info@r | eloc.it – <u>www.reloc.it</u> |
|--------------|-----------------------------------------|--------|-------------------------------|
|              | HEADQUARTERS                            | Land   | +39-0521-1913460              |
| ,            | Via Borsari, 23/A 43126 – Parma (Italy) | Fax    | +39-0521-1913461              |



## 1. Introduction

## 1.1. Description

ARIS board, developed by RELOC for Arrow Electronics, is a ready-to-use Internet of Things (IoT) hardware and software platform that enables users to get their IoT applications up and running quickly, exploiting the Renesas Synergy development framework.

Based around a Renesas Synergy S7 MCU with 240 MHz ARM Cortex-M4 core, the ARIS board has a host of features that equip it for IoT operation. Communication with other devices and the cloud is enabled via Bluetooth Low Energy (BLE 4.1/4.2), Wi-Fi b/g/n support as well as an Ethernet 10/100 port. NFC tag functionality is also included along with a crypto bootloader and support for over-the-air (OTA) firmware updates. Board sensing capabilities include motion detection, i.e. 3-axes accelerometer and 2-axes gyroscope, environmental temperature and humidity sampling.

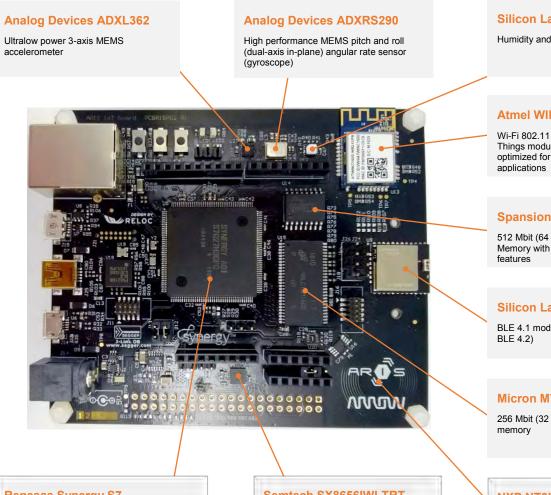
The Renesas Synergy Platform helps to accelerate IoT designs: a proven combination of hardware and software makes development easier and faster, thus encouraging innovation and product differentiation. The combination of Arrow ARIS board and Renesas Synergy software platform enables developers to reduce time—to—market and decreases the total cost of ownership of a product over its lifetime.

## 1.2. Kit contents

The following items are included in the box:

- 1x ARIS board
- 1x USB type A-male to mini-B-male cable

## 1.3. Getting started


Please refer to ARIS Software User's Guide to learn how to get started with the ARIS board.



## 2. System overview

#### 2.1. **Board layout**

The layout of ARROW ARIS board is shown in the picture below.



### **Renesas Synergy S7**

ARM Cortex-M4 core with Floating Point Unit (FPU) Up to 240 MHz core clock

- 4096 KB code flash
- 640 KB SRAM

#### Semtech SX8656IWLTRT

Multitouch 4/5-Wire Resistive Touchscreen Controller with Proximity Sensing

#### Silicon Labs Si70130

Humidity and temperature sensor

#### Atmel WINC1500

Wi-Fi 802.11 b/g/n Internet of Things module specifically optimized for low power IoT

#### Spansion S25FL512S

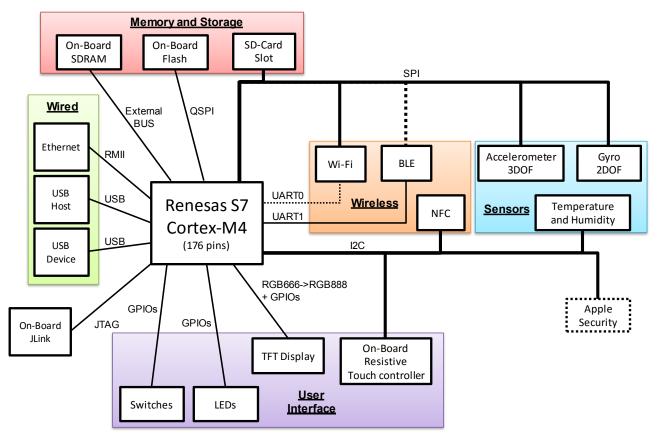
512 Mbit (64 Mbyte) QSPI Flash Memory with advanced security

#### Silicon Labs BGM111

BLE 4.1 module (upgradable to

### Micron MT48LC16M16A2

256 Mbit (32 Mbyte) SDRAM

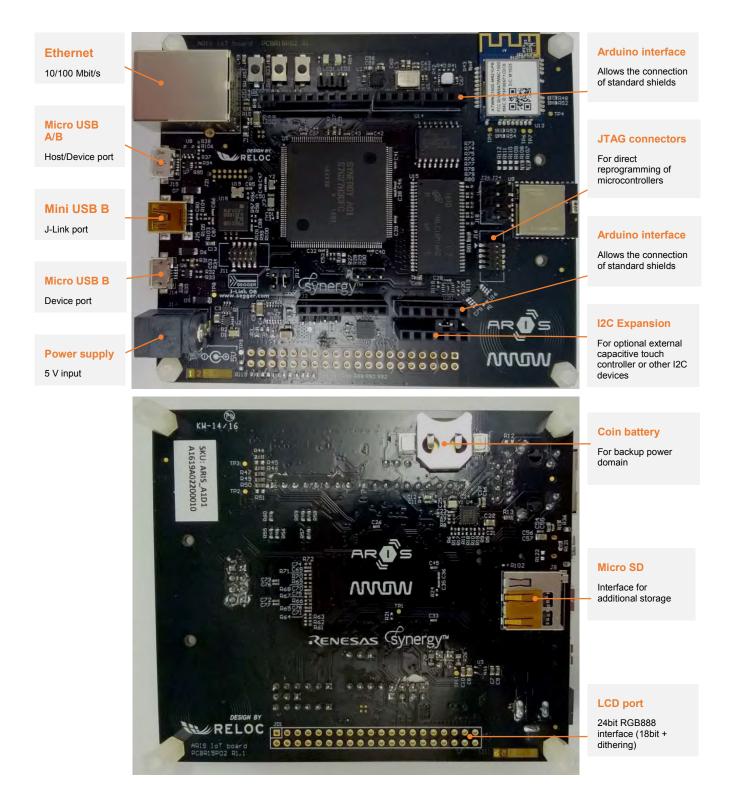

#### **NXP NT3H1201**

Energy harvesting NFC Forum Type 2 Tag with field detection pin and I2C interface



## 2.2. Block diagram

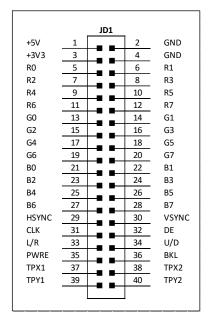
An overview of the functions of ARIS board is shown in the figure below:




••••• = DNP at delivery.



## 3. Connectors

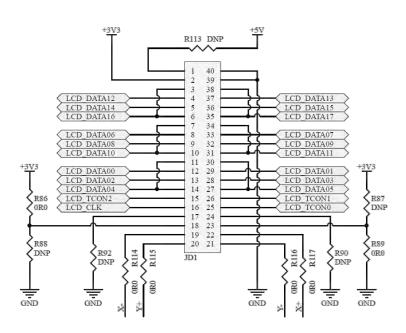

This chapter gives you an overview of the ARIS connectivity. Connectors' placement is depicted in the figure below.





## 3.1. LCD connector

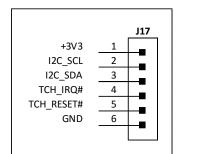
JD1 (bottom side) provides connection to an optional LCD display, such as the LCD-OLinuXino-7TS.




| Signal | Description                           |
|--------|---------------------------------------|
| +5V    | Power supply for backlight            |
| +3V3   | Power supply for logic                |
| GND    | Ground connection                     |
| R0-7   | Digital data for RED                  |
| G0-7   | Digital data for GREEN                |
| B0-7   | Digital data for BLUE                 |
| HSYNC  | Horizontal SYNC signal                |
| VSYNC  | Vertical SYNC signal                  |
| CLK    | Communication clock                   |
| DE     | Data enable                           |
| L/R    | Left/Right scan direction             |
| U/D    | Up/Down scan direction                |
| PWRE   | PWRE                                  |
| BKL    | BKL                                   |
| TPX1-2 | Resistive touch interface X direction |
| TPY1-2 | Resistive touch interface Y direction |

According to the schematic, display +5V power supply (JD1 pin 1) is not connected to the +5V ARIS bus, but should be provided directly to the LCD (e.g. through a dedicated power supply).

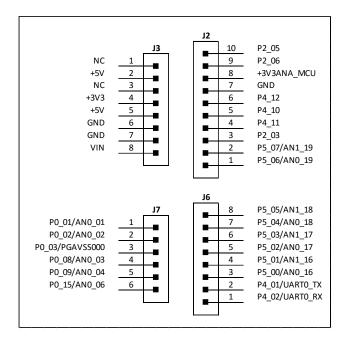
Color data signals provided by Synergy S7 TFT controller are 6-bits wide, so least significant pins on display connector are shorted to most significant pins, obtaining a dithering effect.


Configuration signals are set in standard position, but additional resistors (R86-R90, R92, R114-R117) allow a further customization.





### 3.2. Expansion header


The expansion header J17 is mainly used for connecting an optional capacitive touch controller to the ARIS board.



| Signal                                       | Description                                 |
|----------------------------------------------|---------------------------------------------|
| +3V3                                         | +3.3V power supply                          |
| I2C_SCL                                      | I2C interface shared with NFC and           |
| I2C_SDA combined temperature/humidity sensor |                                             |
| TCH IRQ#                                     | Interrupt request from touch controller (if |
|                                              | J20 has jumper on 2-3)                      |
| TCH_RESET# Reset signal to touch controller  |                                             |
| GND                                          | Ground connection                           |

### 3.3. Arduino connector

The connectors J2, J3, J7, J8 provides user with a standard Arduino shield slot.



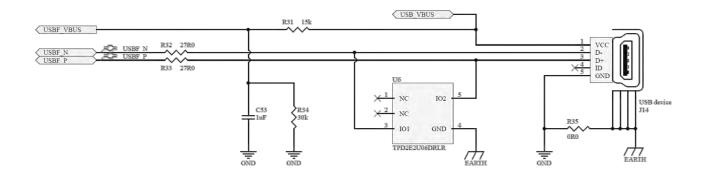
| Signal      | Description                                         |
|-------------|-----------------------------------------------------|
| +5V         | +5V power supply (depending on J5 jumper)           |
| +3V3        | +3.3V power supply (depending on J4 jumper)         |
| GND         | Ground connections                                  |
| VIN         | Input voltage                                       |
| P0_xx       | Analog inputs directly connected to MCU             |
| P4_01-02    | UART shared with WiFi module (if R45-R51 are fitted |
| P5_00-05    | Digital I/O shared with Flash memory                |
| P5_06       | Digital I/O shared with NFC chip                    |
| P5_07       | Digital I/O shared with WiFi module                 |
| P2_03       | Digital I/O directly connected to MCU               |
| P4 10-12    | SPI port shared with microSD, WiFi, accelerometer,  |
| P4_10-12    | gyroscope, bluetooth (if R111 and R112 are fitted)  |
| +3V3ANA_MCU | Analog reference                                    |
| P2 05-06    | I2C interface shared with NFC and combined          |
| 2_03.00     | temperature/humidity sensor                         |

## 3.4. JTAG connectors

The ARIS board features an on-board SEGGER J-Link debugger (see Mini US port), which can be used to program and debug the Synergy S7 microcontroller.

The ARIS board includes additional JTAG connectors, which are generally not required for a "standard" usage. Nevertheless, the following description is provided for reference:

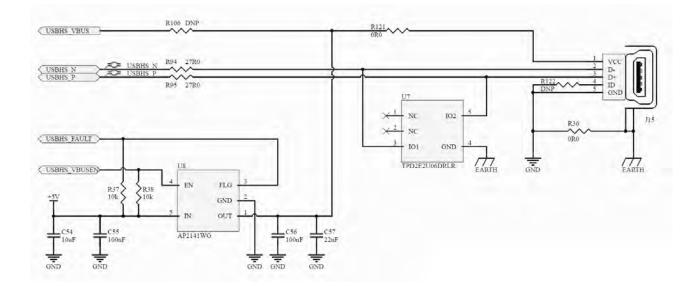
- J11 JTAG connection which can be used to program and debug Synergy S7 with an external J-Link debugger;
- J16 JTAG connector routed to the Silicon Labs Bluetooth system-on-chip;
- J21 E1 programmer connector routed to the Renesas RX621 chip. Such a chip provides users with the on-board SEGGER J-Link facility, thus it should not be erased and/or reprogrammed.


### 3.5. Ethernet 10/100

RELOC DESIGN & INTEGRATION

ARIS board includes a Micrel KSZ8091 10/100 Ethernet physical interface. Ethernet connection is provided through the RJ-45 standard connector T1.

### 3.6. USB device


The board is equipped with a USB Full-Speed (12 Mbps) device port on J14 connector. ARIS can be powered through this interface.



### 3.7. USB host/device

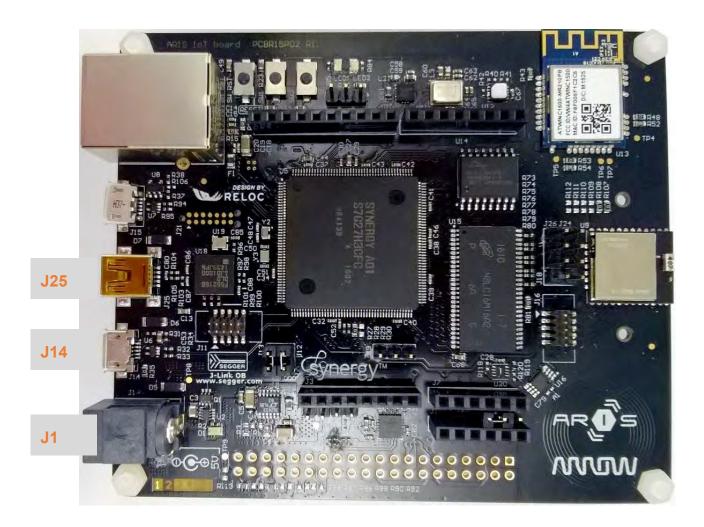
The SK-S7G2 is equipped with an USB High-Speed (480-Mbps) host/device port on J15 connector. This host port can source current to devices connected to it, and over-consumption conditions on devices can be detected.







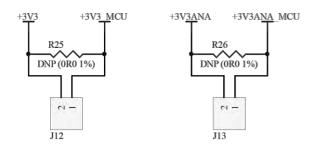
## 4. Usage


This chapter describes how to connect, configure and interact with the ARIS board.

## 4.1. Power supply

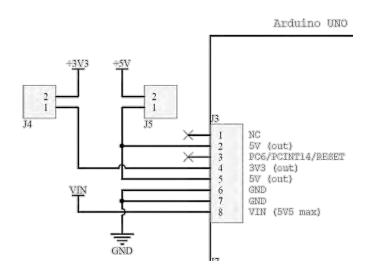
The ARIS board can be supplied with power from

- the DC power jack J1 (5V only),
- the mini-USB port J25,
- or the micro-USB port J14.


### It is not recommended to use more than one power supply source at the same time.

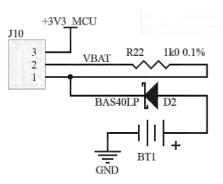





### 4.2. Power enable and measurement

J12 and J13 (populated in the default configuration) provide power to the Synergy MCU. They can also be used to measure the current consumption of the S7 device.

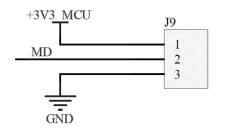



Current Measurement

J4 and J5 (*not* populated in the default configuration) provide power to the Arduino connectors; before placing a jumper please check that current consumption of the shield is within maximum values provided by the +5V input and +3.3V regulated power supply.

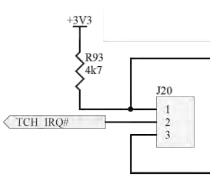


J10 allows to connect VBAT power domain directly to coin battery (jumper on 1-2), through a shunt resistance (open position) or directly to standard +3.3 V power supply (jumper on 2-3)





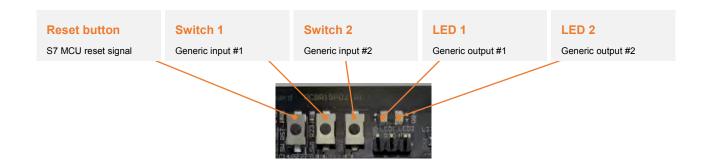

## 4.3. Configuration headers


J9 allows the selection of boot mode:

- Internal ROM (jumper between pins 1-2),
- USB boot (jumper between pins 2-3).



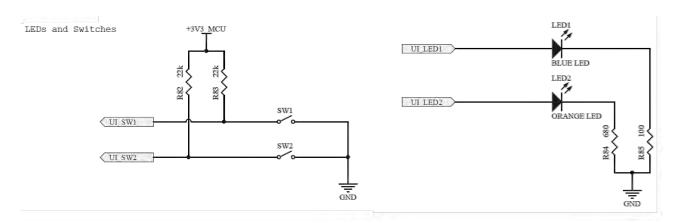
Boot Select Boot from internal ROM (Between 1 and 2) Boot from USB (Between 2 and 3)Text


If an external touch controller is used, J20 can be used to route the IRQ signal from integrated resistive touch controller (jumper 1-2) to the expansion connector J17 - pin 4 (jumper 2-3).





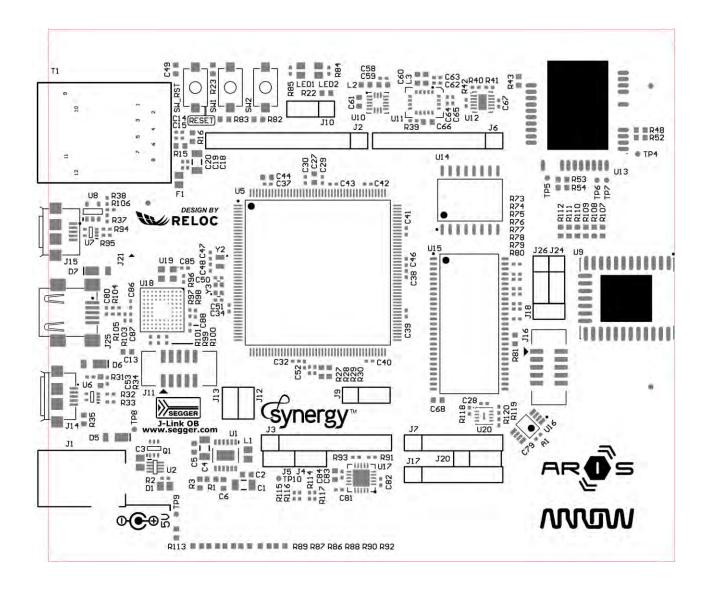
## 4.4. Push buttons and LEDs


A basic user interface is provided through on-board buttons and LEDs.

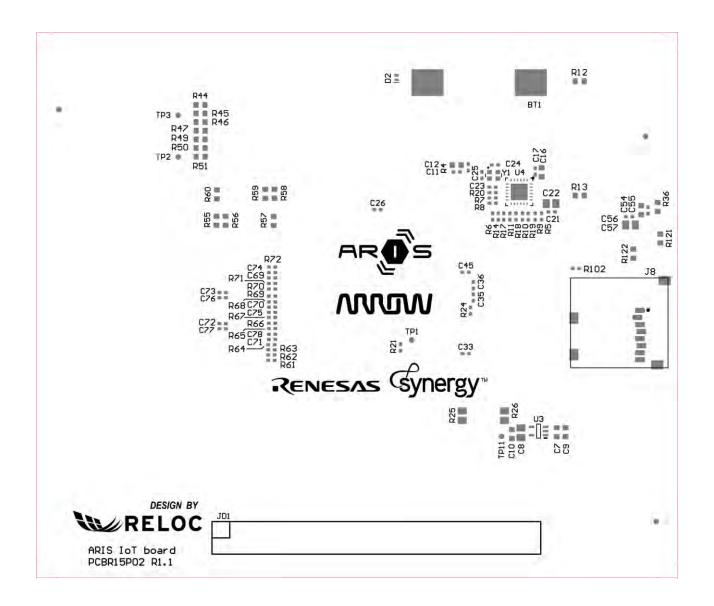


Mapping of the user interface to the microcontroller pins is provided below.

| Port         | Signal  | Description       |
|--------------|---------|-------------------|
| P0_10/AN1_03 | UI_SW1  | Generic input #1  |
| P0_00/AN0_00 | UI_SW2  | Generic input #2  |
| P6_00        | UI_LED1 | Generic output #1 |
| P0_14/DA0    | UI_LED2 | Generic output #2 |


### Schematic extract is provided as an additional reference.






## 5. Board layout

Top and bottom board layouts (component placement and overlay) are provided for reference purposes.





