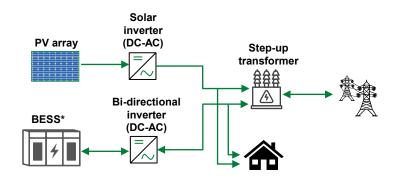


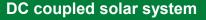
Solar Inverters & Battery Energy Storage Systems (BESS)

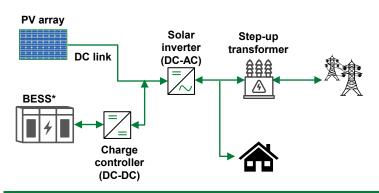

Index

Title	Slide #
Overview and market trends	
Solar Inverter and Battery Energy Storage System(BESS) architectures	3
Types of solar inverter topologies and applications	4
General market trends and drivers	5
Summary of Littelfuse solutions for solar inverters and BESS	5
Types of Solar inverters	
Microinverter	8-9
Power optimizer	10-11
String inverter	12-13
Multi-string inverter	14-15
Central inverter	16-19
Battery Energy Storage System(BESS)	
BESS architecture for residential and commercial	21-22
BESS architecture for large industrial and utility scale	23-24
Supplementary slides	
Safety standards for solar inverter and battery energy storage system (BESS)	25
<u>Littelfuse collaterals</u>	26

Solar Inverter and Battery Energy Storage System(BESS) architectures

AC coupled solar system


Features


Two inverter: Bi-directional inverter with battery and a solar inverter

Offers higher flexibility. Easier installation, especially for retrofits. Get to keep grid-tied inverter

Less efficient as the energy used by batteries is inverted multiple times. Multiple components: Multiple MV transformers, inverters, etc.

Cost effective if there is an existing PV system

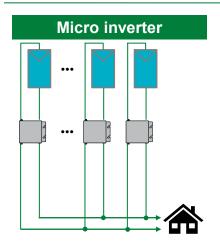
Features

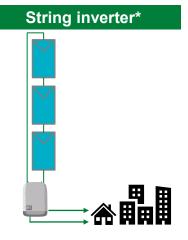
Single inverter to power loads

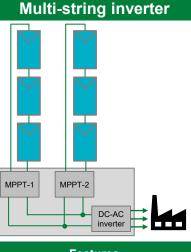
Not ideal for retrofits. Required to replace existing inverter and in many cases PV array wiring need to be reconfigured

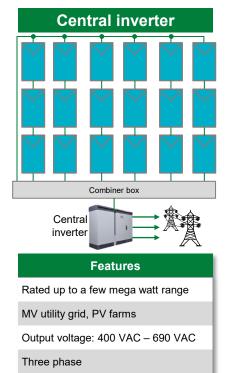
Higher efficiency as the power is not inverter multiple times. Fewer components. Short cables between BESS and PV reduces losses

High cost and complex installatioon with an existing PV system

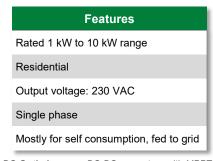



Acronyms:


BESS: battery energy storage system


AC: alternate current

Types of solar inverter topologies and applications



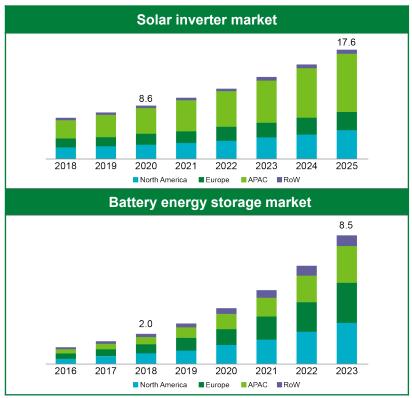
MV distribution networks

Features Rated up to 300 W range Primarily used in residential buildings Output voltage: 230 VAC Single phase Self consumption

Features				
Rated 30 kW – 200 kW				
Commercial, industrial, and utility				
Output voltage: 400 VAC				
Three phase				
Self consumption; distribution networks				

Solar inverter and battery energy storage market is set to grow at a CAGR of 15.6% and 33.9% respectively

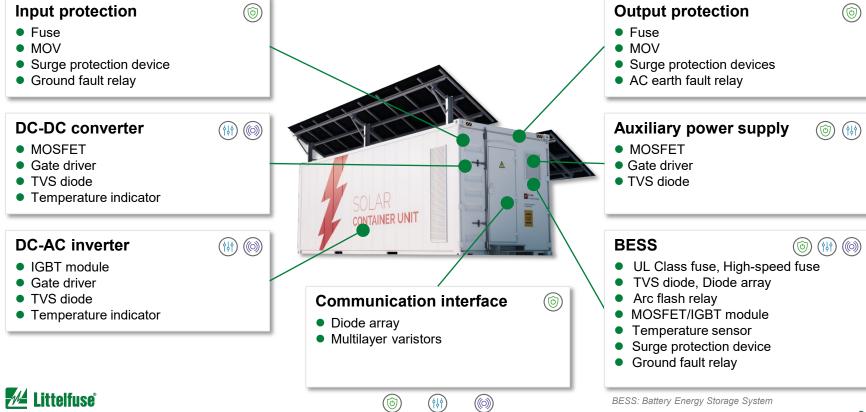
Market trends and drivers


The global solar inverter market is projected to grow from USD 8.6 billion in 2020 to USD 17.6 billion by 2025

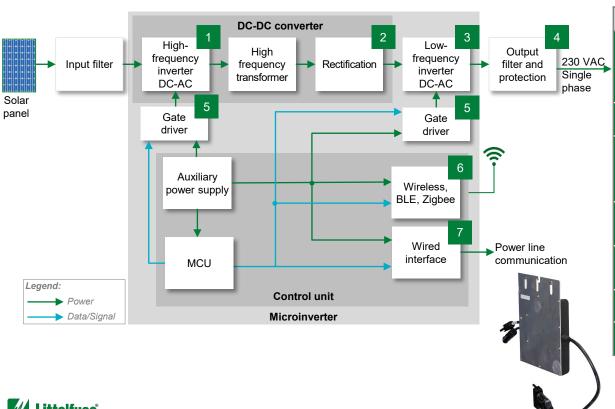
The below 10 kW segment held the largest share of the inverter market in 2019. Inverters with power rating below 10 kW are suitable for use in the residential and commercial sectors

The solar inverter market in APAC projected to grow at the highest CAGR from 2020 to 2025. The rising demand for inverters from the residential, automotive, and PV plants in India, China, and Japan is fueling the growth of the solar inverter market in APAC.

Battery energy storage system market is expected to grow from USD 2.0 billion in 2018 to reach USD 8.5 billion by 2023. APAC to drive the highest growth


Utilities to hold largest size of the battery energy storage system market . Residential energy storage market too grow at 22.8% (3-6 kW segment to grow fastest)

Littelfuse solutions for Solar Inverter and Battery Energy Storage System(BESS)

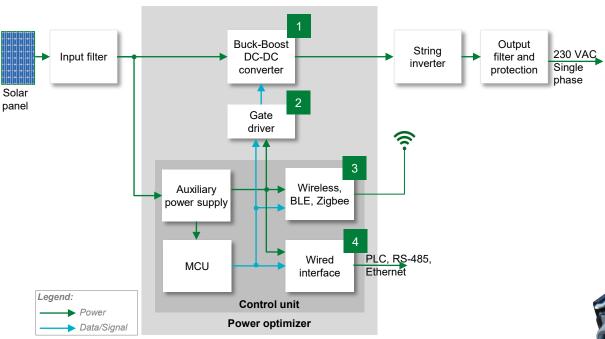


Solar inverters

Microinverter block diagram

	Technology	Product series	
	MOSFET	Trench Gate Gen2,	
1	TVS diode	SMCJ, SMDJ	
	NTC	RA, RB, KR	
2	SiC Schottky Diodes	650V diodes	
3	MOSFET or	<u>Ultra-junction X2</u>	
	IGBT	600-650 V Trench	
	TVS diode	<u>SMBJ</u>	
4	MOV	TMOV, UltraMOV, LA	
4	Cartridge fuse	<u>215</u>	
_	Gate driver	IXD_6xxSI	
5	TVS diode	<u>SMBJ</u>	
6	Diode array or MLV	SP3130, MLA,MHS	
7	Diode array	<u>SP712</u> <u>SP2555NUTG</u>	

Acronyms:


multilayer varistor MOV: metal oxide varistor

Potential Littelfuse products for microinverter

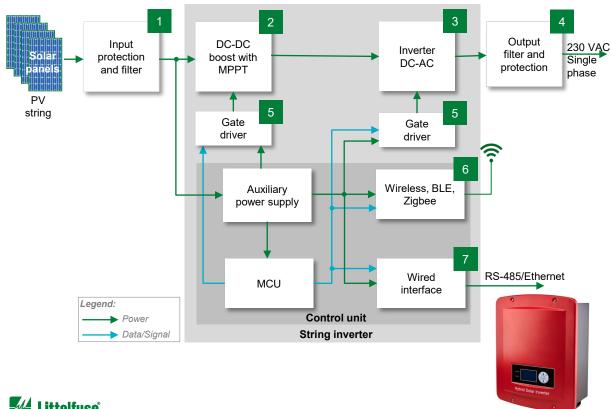
	Technology	Function in application	Series	Benefits	Features
	MOSFET	High frequency switching	Trench Gate Gen2	High power density; easy to mount; space saving	Ultra low on-resistance RDS; high current handling capability; fast body diode
1	TVS diode	Protects MOSFET from voltage transients	SMCJ, SMDJ	Enables compact design; improves system reliability	3000 W P _{PPM} capability; low profile package
	NTC	High temperature detection due to high sunlight, power component failure, etc.	<u>RA</u> , <u>RB</u> , <u>KR</u>	Provides safe operation of PV panels; smaller footprint saves space	Surface mountable; small form-factor
2	SiC Schottky Diodes	Used for rectification	650V diodes	Reduces switching losses; increases system efficiency, reliability and thermal management	High surge capability; negligible reverse recovery current; T_j = 175 $^{\circ}$ C
	MOSFET or IGBT		Ultra-junction X2	High efficiency; high power density; easy to mount	Ultra low on-resistance R _{DS(ON)} and gate charge Qg; low package inductance; dv/dt ruggedness
3			600-650 V Trench	Reduced thermal resistance; low energy losses; fast switching	Low V_{sat} , low E_{on}/E_{off} , high surge current capability; positive thermal co-efficient of $V_{CE(sat)}$
	TVS diode	Protect IGBTs from an event of transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600 W peak pulse power capability; excellent clamping capability; small footprint
4	MOV	Protects power unit from voltage transients and lightning	TMOV, UltraMOV, LA	Reduces customer qualification time by complying with third-party safety standards	High energy absorption capability: 40–530 J (2 ms)
4	Cartridge fuse	Protects from overcurrent events	<u>215</u>	Reduces customer qualification time by complying with third-party safety standards	High breaking capacity; meets the IEC 60127-2
5	Gate driver	Controls the switching MOSFETs	IXD_6xxSI	Dual outputs provide space-efficient design; high immunity to latch-up; rise/fall times <10 ns	Tight tolerance; small form factor; fast thermal response
5	TVS diode	Protect gate driver from event of transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600 W peak pulse power capability; excellent clamping capability; small footprint
6	Diode array or MLV	Protects ICs from ESD through wireless interface	SP3130, MLA,MHS	Smaller form-factor and multi-line protection enables ease of design	Low capacitance of 1.0 pF per I/O
7	Diode array	Protection of data lines from ESD/EFT and surges events	<u>SP712</u> <u>SP2555NUTG</u>	Minimizes signal distortion; reduces voltage over-shoot, and simplified PCB design	Low capacitance of 2.5 pF; low leakage current of 0.1 µA; small form factor

Power optimizer block diagram

	Technology	Product series	
	MOSFET	Trench Gate Gen2,	
1	TVS diode	SMCJ, SMDJ,1.5SMC	
	NTC	RA, RB, KR	
2	Gate driver	IXD 6xxSI	
	TVS diode	<u>SMBJ</u>	
3	Diode array or MLV	<u>SP3130,</u> <u>MLA,MHS</u>	
4	Diode array	<u>SP712</u> <u>SP2555NUTG,SM712</u>	

Acronyms:

multilayer varistor


negative temperature coefficient

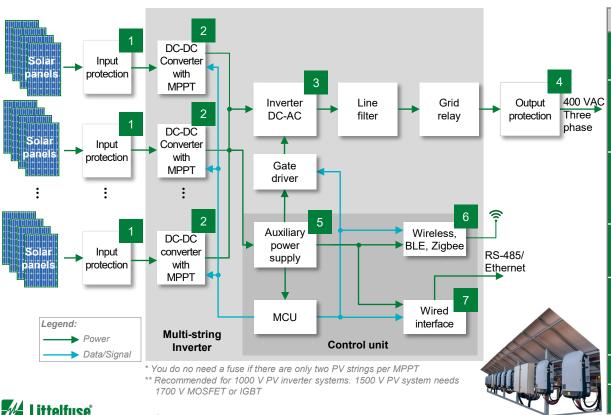
Potential Littelfuse products in power optimizer

	Technology	Function in application	Series	Benefits	Features
	MOSFET	High frequency switching	Trench Gate Gen2	High power density; easy to mount; space saving	Ultra-low on-resistance RDS; high current handling capability; fast body diode
1	TVS diode	Protects MOSFET from voltage transients	SMCJ, SMDJ, 1.5SMC	Enables compact design; improves system reliability	3000 W P _{PPM} capability; low profile package
	NTC	High temperature detection due to high sunlight, power component failure, etc.	RA, RB, KR	Provides safer operation of PV panels; smaller footprint saves space	Surface mountable; small form-factor
	Gate driver	Controls the switching MOSFETs	IXD 6xxSI	Dual outputs provide space-efficient design; high immunity to latch-up; rise/fall times <10 ns	Tight tolerance; small form factor; fast thermal response
2	TVS diode	Protect gate driver from event of transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600 W peak pulse power capability; excellent clamping capability; small footprint
3	Diode array or MLV	Protects ICs from ESD through wireless interface	SP3130, MLA,MHS	Smaller form-factor and multi-line protection enables ease of design	Low capacitance of 1.0 pF per I/O
4	Diode array	Protection of data lines from ESD/EFT and surges events	<u>SP712, SP2555NUTG, SM712</u>	Minimizes signal distortion, reduces voltage overshoot, and simplified PCB design	Low capacitance of 2.5 pF; low leakage current of 0.1 μA; small form factor

String inverter block diagram

	Technology	Product series	
1	MOV	UltraMOV, LA, SM20	
	MOSFET	Trench Gate Gen2	
	TVS diode	SMCJ, SMDJ	
2	SiC Schottky diode	650V diodes	
	NTC	RA, RB, KR	
	MOSFET or	<u>Ultra-junction X2</u>	
3	IGBT	600-650 V Trench	
	TVS diode	<u>SMBJ</u>	
	MOV	TMOV, UltraMOV, LA	
4	Fuse	Class J, Class RK5, KLKD	
5	Gate driver	IXD_6xxSI, IX4351NE	
Ð	TVS diode	<u>SMBJ</u>	
6	Diode array or MLV	SP3130, MLA,MHS	
7	Diode array	<u>SP712, SM712</u> <u>SP2555NUTG</u>	

Acronyms:


MPPT: maximum power point tracking MOV: metal oxide varistor

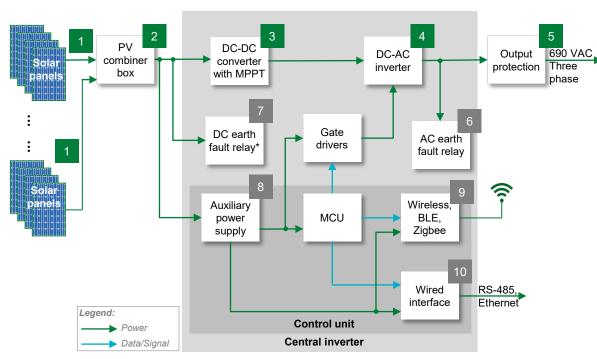
Potential Littelfuse products for string inverter

	Tachnalasy	Function in confication	Series	Benefits	Features
	Technology	Function in application	Series	Denents	reatures
1	MOV	Protects from voltage transients and lighting surges	UltraMOV, LA, SM20	Reduces customer qualification time by complying with third-party safety standards	High energy absorption capability: 40–530 J (2 ms)
	MOSFET	High frequency switching	Trench Gate Gen2	High power density; easy to mount; space-saving	Ultra-low on-resistance RDS; high current handling capability; fast body diode
	TVS diode	Protects MOSFET from voltage transients	SMCJ, SMDJ	Enables compact design; improves system reliability	3000 W P _{PPM} capability; low profile package
2	SiC Schottky diode	Used for rectification	650V diodes	Reduces switching losses; increases system efficiency, reliability and thermal management	High surge capability; negligible reverse recovery current; Tj = 175° C
	NTC	High temperature detection due to high sunlight, power component failure, etc.	<u>RA, RB, KR</u>	Provides safe operation of PV panels; smaller footprint saves space	Surface mountable; small form-factor
	MOSFET or Convert DC voltage from PV panel to AC line voltage	Convert DC voltage from PV panel to	Ultra-junction X2	High efficiency; high power density; easy to mount	Ultra low on-resistance R _{DS(ON)} and gate charge Qg; low package inductance; dv/dt ruggedness
3		600-650 V Trench	Reduced thermal resistance; low energy losses; fast-switching	Low V_{sat} , low E_{on}/E_{off} , high surge current capability; positive thermal coefficient of $V_{CE(sat)}$	
	TVS diode	Protect IGBTs from an event of transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600W peak pulse power capability; excellent clamping capability; small footprint
	MOV	Protects power lines from voltage transients and lightning surges	TMOV, UltraMOV, LA	Reduces customer qualification time by complying with third-party safety standards	High energy absorption capability: 40–530 J (2 ms)
4	Cartridge fuse	Protects from overcurrent events	<u>215</u>	Reduces customer qualification time by complying with third-party safety standards	High breaking capacity; meets the IEC 60127-2
_	Gate driver	Controls the switching MOSFETs	IXD 6xxSI, IX4351NE	Dual outputs provide space-efficient design; high immunity to latch-up; rise/fall times less than 10 ns	Tight tolerance; small form factor; fast thermal response
5	TVS diode	Protect gate driver from event of transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600W peak pulse power capability; excellent clamping capability; small footprint
6	Diode array or MLV	Protects ICs from ESD events	SP3130, MLA, MHS	Smaller form-factor; offers design flexibility	Low capacitance of 1.0 pF per I/O
7	Diode array	Protection of data lines from ESD/EFT and surges events	<u>SP712, SM712</u> <u>SP2555NUTG</u>	Minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design	Low capacitance of 2.5 pF; low leakage current of 0.1 μ A; small form factor

Multi-string inverter block diagram

	Technology	Product series	
	Fuse*	SPF, SPFI	
1	SPD	SPD2 PV series	
	SiC MOSFET or	LSIC1MO120E0120	
2	MOSFET**	High Voltage Series	
	SIC Diode**	1200 V diode	
	IGBT Module	MIXA, MIXG	
3	High-speed fuse	<u>PSR</u>	
	TVS diode	SMBJ	
	Fuse	Class T, Class J	
4	MOV or SPD	UltraMOV, LA, SM7 SPD type 2	
	SiC MOSFET or MOSFET	LSIC1MO170E1000 High Voltage Series	
5	Gate driver	<u>IX4351NE</u>	
	TVS diode	<u>SMF</u>	
6	Diode array or MLV	SP3130, MLA,MHS	
7	Diode array	<u>SP712, SM712</u> <u>SP2555NUTG</u>	

Acronyms:


maximum power point tracking surge protection devices

Potential Littelfuse products for multi-string inverter

	Technology	Function in application	Series	Benefits	Features
4	Fuse	Protect PV modules and conductors from reverse overcurrent conditions	SPF, SPFI	Prevents power generation losses due to nuisance tripping from changes in temperature	Meets UL and IEC standards; 1000 V _{DC} , 1–30 A ratings available; max interrupt rating 50 kA
'	SPD 2	Provide equipment protection from transient overvoltage events I	SPD2 PV series	Withstand high-energy transients to prevent disruption, downtime, degradation of equipment	Available in 1100 and 1500 Vdc; compact footprint; capability to clamp and withstand transients
	SiC MOSFET or		LSIC1MO120E0120	Optimized for high-frequency applications	Ultra-low output capacitance and on-resistance
2	MOSFET*	Boost converter for high-frequency	High Voltage Series	High power density; easy to mount; space-saving	Fast switching time; ultra-low R _{DS(on)}
	SiC Diode	switching	<u>1200 V diode</u>	Reduces switching losses; increases system efficiency, reliability, and thermal management	High surge capability; negligible reverse recovery current; Tj 175 °C
	IGBT module	Switches power supplies	MIXA, MIXG	Allows flow power consumption and fast response	Rugged design with thin wafer technology; low gate charge; low EMI and competitive low V _{CE(SAT)}
3	High-speed fuse	Protects semiconductor devices in inverter	<u>PSR</u>	Lower I ² t performance allows for quick response to protect devices from higher heat energy	550-1300 V _{AC} , 500-1000 V _{DC} , 40-2000 A
	TVS diode	Protect IGBTs from an event of transient overload	SMBJ	Enables compact design; improves system reliability	600 W peak pulse power capability; excellent clamping capability; small footprint
4	Fuse	Overcurrent or short circuit protection	Class T, Class J	Reduces damage to equipment caused by heating and magnetic effects of short circuit currents;	Extremely current-limiting; small footprint; 200 kA interrupting rating
4	MOV or SPD	Protects from power fluctuations or surges	UltraMOV, LA, SM7 SPD type 2	Withstand high-energy transients to prevent disruption, downtime, degradation of equipment	20 kA nominal interrupting rating and 50 kA maximum interrupting rating
	SiC MOSFET or MOSFET	High frequency switching	LSIC1MO170E1000 High Voltage Series	Optimized for high-frequency; high power density; easy to mount; space-saving	extremely low gate charge and output capacitance; ultra low on-resistance; fast switching time
5	Gate driver	to drive SiC MOSFETs and high power IGBTs	<u>IX4351NE</u>	Eliminates the need for separate negative supply; quick turn-on and turn-off of power SiC MOSFET	Separate 9 A peak source and sink outputs; Internal negative charge pump regulator for
	TVS diode	Protects SiC MOSFET from voltage transient	SMF	Enables compact design; improves system reliability	200W peak pulse power capability; excellent clamping capability; low profile
6	Diode array or MLV	Protects ICs from ESD events	<u>SP3130, MLA, MHS</u>	Smaller form-factor and ease of design	Low capacitance of 1.0 pF per I/O
7	Diode array	Protection of data lines from ESD/EFT and surges events	<u>SP712, SM712</u> <u>SP2555NUTG</u>	Minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design	Low capacitance of 2.5 pF; Low leakage current of 0.1 µA; small form factor

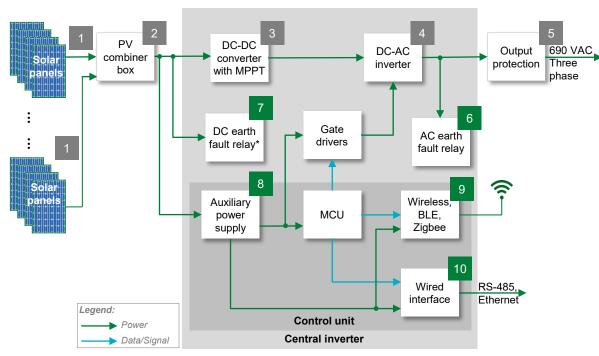
Central inverter block diagram

^{**} Ground Fault detectors should be used for resistive grounded systems. Suggest: EL731

Acronyms:

MPPT: maximum power point tracking surge protection devices

	Technology	Product series	
1	In-line fuse	<u>SPXI</u>	
2	Fuse Holder	SPXV, SPNH, LFPXV	
	SPD	SPD2 PV series	
3	SiC MOSFET or MOSFET*	LSIC1MO120E0120; High Voltage Series	
Ĭ	SIC Diode*	1200 V diode	
	IGBT module	MIXA, MIXG	
4	High-speed fuse	<u>PSR</u>	
	TVS diode	SMBJ	
5	Fuse	<u>Class J,</u> <u>Class RK5, Class L</u>	
	SPD	SPD type 2	



Potential Littelfuse products for central inverter

	Technology	Function in application	Series	Benefits	Features
1	Inline fuse	Integrates into an in-line assembly within a wire harness	<u>SPXI</u>	Offers higher amperage protection; design flexibility; save space, time, and money	50,000 A interrupting rating; UL recognized
2	Fuse	Designed for protection PV systems	SPXV, SPNH, LFPXV	Offers higher amperage protection; ease of design	50,000 A interrupting rating; fast acting fuse
	SPD	Protection from transient overvoltage	SPD2 PV series	Prevents system disruption and downtime	Available in 1100 and 1500 Vdc; compact footprint
	SiC MOSFET or	SiC MOSFET or MOSFET Boost converter for high-frequency switching SiC Diode	LSIC1MO120E0120	Optimized for high-frequency applications	Ultra-low output capacitance and on-resistance
3			High Voltage Series	High power density; easy to mount; space-saving	Fast switching time; ultra-low R _{DS(on)}
	SiC Diode		<u>1200 V diode</u>	Reduces switching losses; increases efficiency,	High surge capability; negligible I _{RR} ; Tj 175 °C
	IGBT module	Switches power supplies	MIXA, MIXG	Low power consumption and fast response	Rugged design; low EMI and low V _{CE(SAT)}
4	High-speed fuse	Protects semiconductor devices in inverter	<u>PSR</u>	Lower I ² t performance allows for quick response to protect devices from higher heat energy	550-1300 V _{AC} , 500-1000 V _{DC} , 40-2000 A
	TVS diode	Protects IGBTs from transient overload	<u>SMBJ</u>	Enables compact design; improves system reliability	600 W P _{PPM} capability; low profile package
5	Fuse	Overcurrent or short circuit protection	<u>Class J,</u> <u>Class RK5, Class L</u>	Reduces damage to equipment caused by short circuit currents; compact design	Extremely current-limiting; small footprint; 200 kA interrupting rating
5	SPD	Protects from power fluctuations or surges	SPD type 2	Withstand high-energy transients to prevent disruption, downtime, and degradation	20 kA nominal interrupting rating and 50 kA maximum interrupting rating

Central inverter block diagram

^{*} Recommended for 1000 V PV inverter systems. 1500 V PV system need 1700 V MOSFET

^{**} Ground Fault detectors should be used for resistive grounded systems. Suggest: EL731

Acronyms:

MPPT: maximum power point tracking surge protection devices

	Technology	Product series	
6	AC ground fault relay	<u>EL-731</u>	
7	DC ground fault relay**	EL-731,SE-601	
8	SiC MOSFET or MOSFET	LSIC1MO170E1000 High Voltage Series	
	Gate driver	<u>IX4351NE</u>	
	TVS diode	SMF	
9	Diode array or MLV	<u>SP3130,</u> <u>MLA, MHS</u>	
10	Diode array	<u>SP712, SM712</u> <u>SP2555NUTG</u>	

Potential Littelfuse products for central inverter

	Technology	Function in application	Series	Benefits	Features	
6	AC ground fault relay	Offers low-level ground-fault protection	<u>EL-731</u>	Adjustable trip setting provides a wide range of low-level protection and system coordination	Adjustable pickup (30-5,000 mA); Frequency range (0-90 Hz, 20-6,000 Hz)	
7	DC ground fault relays	Offers low-level ground-fault protection	EL-731,SE-601	Adjustable trip setting provides a wide range of low-level protection	Adjustable pickup EL-731(30-5,000 mA); SE-601(1-20 mA)	
	SiC MOSFET or MOSFET	High frequency switching	LSIC1MO170E1000 High Voltage Series	Optimized for high-frequency applications; high power density; easy to mount; space-saving	Extremely low gate charge and output capacitance; ultra low on-resistance	
8	Gate driver	to drive SiC MOSFETs and high power IGBTs	<u>IX4351NE</u>	Eliminates the need for separate negative supply; quick turn-on and turn-off of power SiC MOSFET	Separate 9 A peak source and sink outputs; Internal negative charge pump regulator	
	TVS diode	Protects SiC MOSFET from voltage transient	SMF	Enables compact design; improves system reliability	200W peak pulse power capability; excellent clamping capability; low profile	
9	Diode array	Protects ICs from ESD via wireless interface	SP3130	Smaller form-factor and multi-line protection ease of design	Low capacitance of 1.0 pF per I/O	
10	Diode array	Protection of data lines from ESD/EFT and surges events	<u>SP712, SM712</u> <u>SP2555NUTG</u>	Minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design	Low capacitance of 2.5 pF; Low leakage current of 0.1 µA; small form factor	



Battery Energy Storage System (BESS)

BESS architecture for residential* and commercial

	Technology	Product Series	
4	Fuse	<u>501A</u> , <u>881</u>	
1	Temperature sensor	<u>USP16673, RB</u>	
2	SMD or In-line fuse	<u>438A</u> , <u>441A</u> , <u>521</u>	
	TVS diode	TPSMB, SZ1SMB, SZP6SMB	
3	Diode array	AQ05C	
	TVS diode	TPSMA6L, SZ1SMA	
4	Fuse	TLS, JLLN, CNN	
	High-speed fuse	PSR, PSX	
	MOSFET	X3 Class	
	Gate driver	IXD 6xxSI	
5	HVDC contractor relays	DCNxx	
	Arc flash relays***	<u>AF0100</u>	
	DC Disconnect Switch	<u>LS6xx</u>	
6	Diode array	AQ24CAN	
	Fuse	<u>885</u>	
	TVS diode	TPSMB, TPSMC	

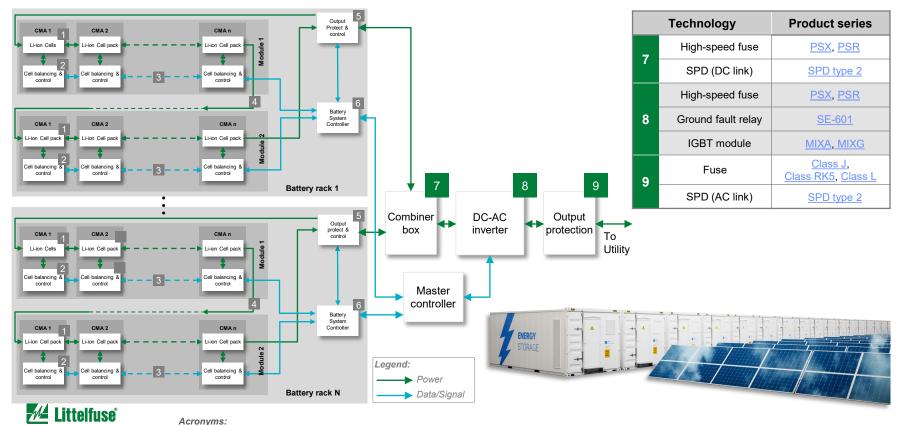
Expertise Applied | Answers Delivered

CMA: Cell Module Assembly BESS: battery energy storage system Li-ion: Lithium-ion

transient voltage suppressor

Potential Littelfuse products for BESS

	Technology	Function in application	Series	Benefits	Features
1	Fuse	Protects cells/BMS components from high-fault currents due to external shorts	<u>501A</u> , <u>881</u>	Excellent temperature stability and performance reliability; compact design	Fast response to fault current; surface mount device
	TVS diode	Transient voltage suppression	TPSMC, SZ1SMC, SZ1.5SMC	Excellent clamping capability; fast response time	Meets IEC standards for ESD protection
	Temperature sensor	Monitoring the system for optimal charging conditions	<u>USP16673</u> , <u>RB</u>	Promotes robust operation; allows design flexibility	Tight tolerance; ultra-thin
2	SMD or In-line fuse	Front end protection due to shorting of power and sense line	<u>438A</u> , <u>441A</u> , <u>521</u>	Excellent temperature stability and performance reliability; compact design	Fast response to fault current; surface mount device
	TVS diode	Protects from transients induced due to assembly and maintenance of batteries	TPSMB, SZ1SMB, SZP6SMB	Excellent clamping capability; fast response time	Meets IEC standards for ESD protection
2	Diode array	Transient voltage suppression	AQ05C	Excellent clamping capability; fast response time	Meets IEC standards for ESD protection
3	TVS diode	Protects sensitive electronic ICs from ESD, EFT, and voltage transient	TPSMA6L, SZ1SMA	Ensures reliability of the equipment without performance degradation	Meets IEC standards for ESD protection; low leakage current and clamping voltage
4	Fuse	Protects from short-circuits and overloads between two packs	TLS, JLLN, CNN	Reduces damage to equipment caused by short circuit currents; compact design	Extremely current-limiting; small footprint; 200 kA interrupting rating



Potential Littelfuse products for BESS

	Technology	Function in application	Series	Benefits	Features	
5	High-speed fuse	Short-circuit and overload protection resulting due to high-power system	<u>PSR, PSX</u>	Lower I ² t performance allows for quick response to protect devices from higher heat energy	High DC voltage rating up to 1500 VDC; extremely fast-acting; compact form-factor	
	MOSFET	Output power control switch	X3 Class	Low power loss; design flexibility; high efficiency	Low R _{DS(ON)} ; fast soft recovery body	
	Gate driver	Controls the switching MOSFETs	IXD_6xxSI	Dual outputs provide space-efficient design; high immunity to latch-up; rise/fall times less than 10 ns	Tight tolerance; small form factor; fast thermal response	
	HVDC contractor relays	The main contactors connect and disconnect the battery system	<u>DCNxx</u>	Allows a low voltage signal to switch the contacts for a high voltage signal	Wide range of capabilities – can switch from 10's of amps to 1000's of amps, and 10's of volts to 1000's of volts	
	Arc flash relays	Reduces damage by detecting the light from an arc flash and rapidly tripping	<u>AF0100</u>	Fits into a wide range of arc-flash applications; monitor two arc-flash sensors; compact design	Input voltage: 100-240 VAC/VDC, 24-48 VDC, dual sensor input; surface mounting DIN RAIL	
	DC Disconnect Switch	Help quickly break or resume the flow of current safely to prevent shock hazards when trying to isolate circuits or repair systems	<u>LS6xx</u>	energy-efficient, compact size; decreases installation and maintenance time; increase product reliability and longevity	High-level disconnection insulation; self-cleaning blade contacts; meets UL 98B, UL 94, and IEC 60947-3 standards	
6	Diode array	Protects from ESD, EFT, and voltage transient	AQ24CAN	Ensures reliability of the equipment without performance degradation	Meets IEC standards for ESD protection; low leakage current and clamping voltage	
	Fuse	Protects cells and BMS components from overcurrent	<u>885</u>	Compact design; ensures compatibility with high-temperature environment	Fast response to fault current; surface mount device	
	TVS diode	Transient voltage suppression	TPSMB, TPSMC	Excellent clamping capability; fast response time	Meets IEC standards for ESD protection	

BESS architecture for large industrial and utility scale (multiple battery racks connected)

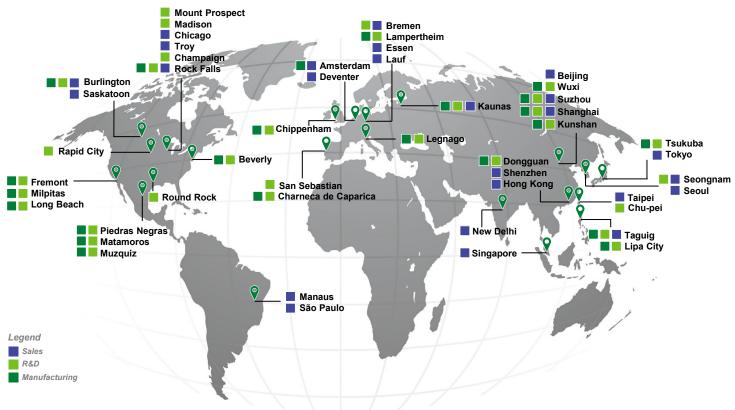
Expertise Applied | Answers Delivered

Potential Littelfuse products for industrial and utility scale BESS

	Technology	Function in application	Series	Benefits	Features
7	High-speed fuse	Short-circuit and overload current protection	PSX, PSR	Lower I ² t performance allows for quick response to protect devices from higher heat energy	High DC voltage rating up to 1500 VDC extremely fast-acting; compact form-factor
	SPD (DC link)	Provides equipment protection from transient overvoltage events	SPD type 2	Withstands high-energy transients to prevent disruption, downtime, and degradation	20 kA nominal interrupting rating and 50 kA maximum interrupting rating
8	High-speed fuse	Short-circuit and overload current protection for power semiconductors	PSX, PSR	Lower I ² t performance allows for quick response to protect devices from higher heat energy	High DC voltage rating up to 1500 VDC; extremely fast-acting; compact form-factor
	Ground fault relay	Offers low-level ground-fault protection	<u>SE-601</u>	Provides a wide range of low-level protection; adjustable trip delay allows quick protection or delayed response	Adjustable pickup (1-20 mA); adjustable time delay (50 ms-2.5 s); CSA certified, UL Listed (E340889), CE (European Union), C-Tick
	IGBT module	Switches power supplies	MIXA, MIXG	Allows for low power consumption and fast response	Rugged design; low gate charge; low EMI and low V _{CE(SAT)}
9	Fuse	Overcurrent or short circuit protection	<u>Class J,</u> <u>Class RK5, Class L</u>	Reduces damage to equipment caused by short circuit currents; compact design	Extremely current-limiting; small footprint; 200 kA interrupting rating
	SPD (AC link)	Protects from power fluctuations or surges	SPD type 2	Withstands high-energy transients to prevent disruption, downtime, and degradation	20 kA nominal interrupting rating and 50 kA maximum interrupting rating

Safety standards for solar inverter and battery energy storage system (BESS)

Standard	Title	General scope	Region
UL 1741	Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources	These requirements cover inverters, converters, charge controllers, and interconnection system equipment (ISE) intended for use in stand-alone or grid-connected power systems	North America
IEC 61683	Power conditioners – Procedure for measuring efficiency	This standard describes guidelines for measuring the efficiency of power conditioners used in stand-alone and utility-interactive photovoltaic systems	Global
IEC 62109-1	Safety of Power Converters for Use in Photovoltaic Power Systems – Part 1: General Requirements	This part of IEC 62109 applies to the power conversion equipment (PCE) for use in Photovoltaic (PV) systems where a uniform level of safety is necessary. This standard defines the minimum requirements for the design and manufacture of PCE for protection against fire, energy, electric shock, mechanical, other hazards, etc.	Global
IEC 62109-2	Safety of Power Converters for Use in Photovoltaic Power Systems – Part 2: Particular Requirements for Inverters	This Part 2 of IEC 62109 covers the particular safety requirements relevant to DC to AC inverter products intended for use in photovoltaic power systems	Global
UL 9540A	Standard for Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems	This document evaluates the fire characteristics of a battery energy storage system that undergoes thermal runaway	North America
EN 50524	Data Sheet and Name Plate for Photovoltaic Inverters	Data sheet and name plate for photovoltaic inverters. The intent of this document is to provide minimum information required to configure a safe and optimal system with photovoltaic inverters.	Europe
EN 50530	Overall Efficiency of Photovoltaic Inverters	This European Standard provides a procedure for the measurement of the accuracy of the maximum power point tracking (MPPT) of inverters, which are used in grid-connected photovoltaic systems.	Europe



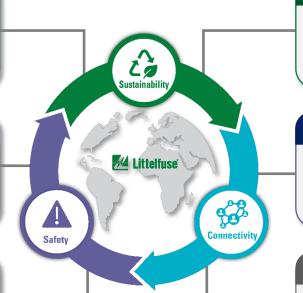
Additional information can be found on Littelfuse.com

Expertise Applied | Answers Delivered

Local resources supporting our global customers

Partner for tomorrow's electronic systems

BROAD PRODUCT PORTFOLIO


An industrial technology manufacturing company empowering a sustainable, connected, and safer world

APPLICATION EXPERTISE

Our engineers partner directly with customers to help speed up product design and meet their unique needs

GLOBAL CUSTOMER SERVICE

Our global customer service team is with you to anticipate your needs and ensure a seamless experience

COMPLIANCE AND REGULATORY EXPERTISE

To help customers in the design process to account for requirements set by global regulatory authorities

TESTING CAPABILITIES

To help customers get products to market faster, we offer certification testing to global regulatory standards

GLOBAL MANUFACTURING

High-volume manufacturing that is committed to the highest quality standards

Littelfuse.com