
arrow.com

CPU FPGA GPU ASIC

Overview Traditional sequential
processor for general-
purpose applications

Flexible collection of logic
elements and IP blocks
that can be configured and
changed in the field

Originally designed for
graphics; now used in a wide
range of computationally
intensive applications

Custom integrated circuit
optimized for the end
application

Processing Single- and multi-core
MCUs and MPUs, plus
specialized blocks: FPU, etc.

Configured for application;
SoCs include hard or soft IP
cores (e.g., Arm)

Thousands of identical
processor cores

Application-specific: may
include third-party IP cores

Programming OSes, APIs run huge range
of high-level languages;
assembly language

Traditionally HDL (Verilog,
VHDL); newer systems
include C/C++ via openCL
& SDAccel

OpenCL & Nvidia’s CUDA
API allow general-purpose
programming (e.g., C, C++,
Python, Java, Fortran)

Application-specific:
TensorFlow open-source
framework for Google’s
TPU; CPU manufacturers
(e.g., Intel) include tools with
new ASIC releases

Peripherals Wide choice of analog and
digital peripherals in MCUs;
MPUs include digital bus
interfaces

SoCs include many
transceiver blocks,
configurable I/O banks

Very limited; e.g., only cache
memory

Tailored to application: may
include industry-standard
functions (USB, Ethernet, etc.)

Strengths Versatility, multitasking,
ease of programming

Configurable for specific
application; configuration can
be changed after installation;
high performance per watt;
accommodates massively
parallel operation; wide choice
of features: DSPs, CPUs

Massive processing power
for target applications—
video processing, image
analysis, signal processing

Custom-designed for
application with optimum
combination of performance
and power consumption

Weaknesses OS capability adds high
overhead; optimized for
sequential processing with
limited parallelism

Relatively difficult to
program; second-longest
development time; poor
performance for sequential
operations; not good for
floating-point operations

High power consumption, not
suited to some algorithms;
problems must be reformu-
lated to take advantage of
parallelism, but API frame-
works provide abstraction

Longest development
time; high cost; cannot
be changed without
redesigning the silicon

It’s also worth considering how these choices stack up in some common applications. As shown in the table, designers can often use any or all of
the options either alone or, more likely, in combination.

Applications CPU FPGA GPU ASIC Comments

Vision & image processing ✓ ✓ ✓ FPGA may give way to ASIC in high-volume applications

AI training ✓ GPU parallelism well-suited for processing terabyte data sets in reasonable time

AI inference ✓ ✓ ✓ ✓ Everyone wants in! FPGAs perhaps leading; high-end CPUs (e.g., Intel’s Xeon) and
GPUs (e.g., Nvidia’s T4) address this market

High-speed Search ✓ ✓ ✓ ✓ Microsoft’s Bing uses FPGAs; Google uses TPU ASIC; CPU needed for
coordination & control

Industrial motor control (✓) ✓ ✓ Many motor-control MCUs and ASICs available; FPGAs offer a quick-turn ASIC
alternative

Supercomputer HPC ✓ ✓ Majority of TOP500 supercomputers uses some combination of CPUs and GPUs

General-purpose
computing ✓ (✓) CPU most versatile, flexible option; GPUs beginning to perform some tasks

Embedded control ✓ ✓ ✓ CPUs (-> MCU) dominant in low-cost, space-constrained, low-power, mobile
applications

Prototyping, low-volume ✓ FPGAs best choice for low-volume, high-end applications; also pre-silicon
validation, post-silicon validation and firmware development

FPGA vs CPU vs GPU vs Microcontroller

